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Abstract: This review discusses a simple family of models capable of simulating tropical cyclone
life cycles, including intensification, the formation of the axisymmetric version of boundary layer
shocks, and the development of an eyewall. Four models are discussed, all of which are axisymmetric,
f -plane, three-layer models. All four models have the same parameterizations of convective mass
flux and air–sea interaction, but differ in their formulations of the radial and tangential equations
of motion, i.e., they have different dry dynamical cores. The most complete model is the primitive
equation (PE) model, which uses the unapproximated momentum equations for each of the three
layers. The simplest is the gradient balanced (GB) model, which replaces the three radial momentum
equations with gradient balance relations and replaces the boundary layer tangential wind equation
with a diagnostic equation that is essentially a high Rossby number version of the local Ekman
balance. Numerical integrations of the boundary layer equations confirm that the PE model can
produce boundary layer shocks, while the GB model cannot. To better understand these differences
in GB and PE dynamics, we also consider two hybrid balanced models (HB1 and HB2), which differ
from GB only in their treatment of the boundary layer momentum equations. Because their boundary
layer dynamics is more accurate than GB, both HB1 and HB2 can produce results more similar to the
PE model, if they are solved in an appropriate manner.

Keywords: tropical cyclone models; axisymmetric three-layer models; gradient balance model;
primitive equation model; hybrid balanced model

1. Introduction

An extensive hierarchy of numerical models allows the tropical cyclone research
community to simulate the intensification and movement of tropical cyclones. At the top of
this hierarchy, non-hydrostatic, three-dimensional, full-physics models are the ones of most
interest for accurate tropical cyclone prediction. At the bottom of this hierarchy, simple,
axisymmetric models remain useful for providing a conceptual understanding of certain
aspects of the tropical cyclone problem. Here, the purpose is to discuss the equations
that comprise a simple family of dynamical models capable of simulating tropical cyclone
life cycles, including intensification, the formation of boundary layer shocks, and the
development of an eyewall. In particular, we will consider the following four models:

• Primitive Equation Model (PE),
• Hybrid Balanced Model 1 (HB1),
• Hybrid Balanced Model 2 (HB2),
• Gradient Balanced Model (GB).

All four models are axisymmetric and hydrostatic, with only three layers and with
moisture predicted only in the lowest layer. All have the same simple parameterizations of
convective mass fluxes and air–sea interaction. The most general model considered here
is the primitive equation model (PE), which retains the primitive form of the momentum
equations in all three layers. It is the only one of the four models that does not filter
propagating inertia-gravity waves. The first hybrid balanced model (HB1) assumes gradient
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balance in the upper two layers but retains the primitive form of the momentum equations
in the boundary layer. The second hybrid balanced model (HB2) is slightly simpler than
HB1 in that diagnostic forms of the boundary layer momentum equations are used, so that
the boundary layer pumping is diagnostic but more accurate than in GB. HB2 is identical
to the model briefly studied by Ooyama [1]. Finally, the gradient balanced model (GB)
assumes gradient balance in all three layers, with the boundary layer pumping becoming
both diagnostic and local. GB is identical to the model extensively studied by Ooyama [2].

This review is organized in the following way. Section 2 and Table 1 give a sum-
mary of the three-layer primitive equation model. Then, Sections 3 and 4, along with
Tables 2 and 3, provide corresponding summaries of the hybrid balanced models HB1
and HB2, while Section 5 and Table 4 give a summary of the fully balanced model GB.
Section 6 discusses how the prognostic boundary layer dynamics of the PE and HB1 models
can be isolated from the dynamics of the overlying layers and then studied as a one-way
interaction problem. The potential vorticity aspects of the four models are then discussed
in Section 7.

2. Primitive Equation Model (PE)

As illustrated in Figure 1, all four models consider axisymmetric motions in three
layers of an incompressible fluid on an f -plane with subscripts denoting the layers from
0 for the lowest, 1 for the middle, and 2 for the top layer. The constant density in the
lowest two layers is ρ0 = ρ1 = ρ, and that in the upper layer is ρ2 = ερ, where the
constant ε satisfies ε < 1. The lowest layer has constant thickness h0, while the upper two
layers have variable thicknesses h1(r, t) and h2(r, t). The radial velocity components in
the three layers are u0(r, t), u1(r, t), and u2(r, t), and the corresponding radial mass fluxes
are ψ0(r, t) = −ru0h0, ψ1(r, t) = −ru1h1, and ψ2(r, t) = −ru2εh2. The tangential velocity
components in the three layers are v0(r, t), v1(r, t), and v2(r, t).

The hydrostatic pressure at height z, which depends on the weight of the overlying
fluid, is given by

p1(r, z, t) = gρ(h0 + h1 − z) + gερh2,

p2(r, z, t) = gερ(h0 + h1 + h2 − z),
(1)

where the first line applies in layers 0 and 1 (the lower two layers), while the second line
applies in layer 2 (the upper layer). Assume that, in the far-field, the upper two layer
thicknesses approach the constant values h̄1 and h̄2, so that the corresponding hydrostatic
pressures in the far-field are

p̄1(z) = gρ(h0 + h̄1 − z) + gερh̄2,

p̄2(z) = gερ(h0 + h̄1 + h̄2 − z).
(2)

Defining the geopotential anomalies as φ1 = (p1− p̄1)/ρ and φ2 = (p2− p̄2)/ερ, it is easily
shown from (1) and (2) that

φ1 = g
{
(h1 − h̄1) + ε(h2 − h̄2)

}
,

φ2 = g
{
(h1 − h̄1) + (h2 − h̄2)

}
,

(3)

so that the radial pressure gradient force in the lower two layers is (1/ρ)(∂p1/∂r) =
(∂φ1/∂r), while that in the upper layer is (1/ερ)(∂p2/∂r) = (∂φ2/∂r).
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Figure 1. Schematic diagram of the axisymmetric, three-layer, f -plane family of models. The constant
density in the lower two layers is ρ0 = ρ1 = ρ, while the constant density in the upper layer is
ρ2 = ερ, with ε < 1. The thicknesses of the layers are h0, h1, and h2, with h0 a specified constant, and
with h1 and h2 functions of (r, t). The radial velocity components are u0, u1, and u2, and the radial
mass fluxes are ψ0 = −ru0h0, ψ1 = −ru1h1, and ψ2 = −ru2εh2. The tangential velocity components
are v0, v1, and v2. The surface stress τs drives the boundary layer radial inflow, which results in
boundary layer pumping (w > 0) in the inner region and boundary layer suction (w < 0) in the
outer region. Diabatic processes are parameterized through the mass transport terms Q+ and Q−.
Adapted from ([2], Figure 1).

The mass continuity equations are

∂(rh0u0)

r∂r
= −w, (4)

∂h1

∂t
+

∂(rh1u1)

r∂r
= w−Q, (5)

ε
∂h2

∂t
+

∂(rεh2u2)

r∂r
= Q, (6)

where w is the vertical velocity at the top of the boundary layer and Q = Q+ − Q− is
the diabatic mass flux between the upper two layers with Q+ being the upward diabatic
mass flux (heating) from layer 1 to layer 2 and Q− being the downward diabatic mass flux
(cooling) from layer 2 to layer 1. Adding the three continuity Equations (4)–(6), noting the
cancellation of the terms on the right-hand side, and then integrating over the area and
specifying the outer boundary condition to be

h0u0 + h1u1 + εh2u2 = 0 at r = b, (7)

we conclude that
d
dt

∫ b

0
ρ(h0 + h1 + εh2)r dr = 0, (8)

i.e., the total mass is conserved.
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The radial momentum equations for the three layers are given by Equations (1.11)–
(1.13) of Table 1, where f is the constant Coriolis parameter, the right-hand side terms are
given by

F0 =
1
h0

{
−(w− + µ)(u0 − u1)− cDUu0 +

∂Λ(u)
0

r2∂r

}
,

F1 =
1
h1

{
−(w+ + µ)(u1 − u0)− (Q− + µ)(u1 − u2) +

∂Λ(u)
1

r2∂r

}
,

F2 =
1

εh2

{
−(Q+ + µ)(u2 − u1) +

∂Λ(u)
2

r2∂r

}
,

(9)

w± = 1
2 (|w| ± w), so w = w+ − w−, µ is the constant coefficient for the frictional stress

between the layers, cD is the drag coefficient, U =
(
u2

0 + v2
0
)1/2 is the boundary layer

wind speed, and the three Λ(u)
j terms are horizontal diffusive fluxes for the u-equations as

given by (A2) in Appendix A. Similarly, the tangential momentum equations for the three
layers are given by Equations (1.14)–(1.16) of Table 1, where the right-hand side terms are
given by

G0 =
1
h0

{
−
(
w− + µ

)
(v0 − v1)− cDUv0 +

∂Λ(m)
0

r2∂r

}
,

G1 =
1
h1

{
−(w+ + µ)(v1 − v0)− (Q− + µ)(v1 − v2) +

∂Λ(m)
1

r2∂r

}
,

G2 =
1

εh2

{
−(Q+ + µ)(v2 − v1) +

∂Λ(m)
2

r2∂r

}
,

(10)

where the three Λ(m)
j terms are horizontal diffusive fluxes for the m-equations as given by

(A4) in Appendix A. Since the momentum Equations (1.11)–(1.16) may have a somewhat
unfamiliar form, a derivation from first principles is given in Appendix A.

Rather than predict h1(r, t) and h2(r, t) via (5) and (6), it is more convenient to pre-
dict φ1(r, t) and φ2(r, t). The prognostic equations for φ1(r, t) and φ2(r, t) are easily ob-
tained from (3), (5), and (6), with the result given in Equations (1.17) and (1.18) of Table 1.
After φ1(r, t) and φ2(r, t) are predicted from (1.17) and (1.18), the layer depths can be recov-
ered from (1.1) and (1.2), which follow directly from (3). Note that σ = 1− ε is a measure
of static stability.

Now, consider the parameterization of the convective mass flux Q+. The equivalent
potential temperature budget in the convection is ηθec = θe0 + (η − 1)θe1, where η is the
entrainment parameter, θec is the equivalent potential temperature in the convection in
the upper layer, θe0 is the equivalent potential temperature in the boundary layer, and
θe1 is the equivalent potential temperature in layer 1. We assume that the convection
has neutral buoyancy in the upper layer, so that θec = θ∗e2, where θ∗e2 is the saturation
equivalent potential temperature in the upper layer. Combining these last two relations,
we obtain Equation (1.9) of Table 1. Note that conditional instability occurs in a column
when θe0 > θ∗e2, which means η > 1 since θ∗e2 > θe1. The equivalent potential temperature
of the middle layer is assumed to be a specified parameter, while the boundary layer
equivalent potential temperature, θe0 (a prognostic variable), and the upper layer saturation
equivalent potential temperature, θ∗e2 (a diagnostic variable), depend on radius and time.
Finally, Q+ is given by Q+ = ηw+, so it then follows that Q = ηw+ −Q− as indicated by
Equation (1.10) of Table 1, where Q− is a specified parameter (typically zero).
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Table 1. Summary of the PE model. The upper half of the table lists the diagnostic equations, while
the lower half lists the nine prognostic equations. The right-hand sides of (1.11)–(1.16) are defined in
(9) and (10). Because the radial components u1(r, t) and u2(r, t) are predicted, the PE model allows
propagating inertia-gravity waves. Because the boundary layer radial and tangential components
u0(r, t) and v0(r, t) are predicted, and because large inflow often occurs in the boundary layer, the
PE model can develop boundary layer shocks. The diabatic mass flux Q+ depends on boundary
layer convergence (w > 0) and the entrainment parameter η, which in turn depends on the boundary
layer equivalent potential temperature θe0, predicted by (1.19), and the upper tropospheric saturation
equivalent potential temperature θ∗e2, diagnosed from (1.4).

Primitive Equation Model (PE)

DIAGNOSTIC EQUATIONS:

Layer thicknesses: Saturation equivalent potential temperatures:

h1 = h̄1 +
1

gσ
(φ1 − εφ2) (1.1) θ∗es = θ̄∗es −

2.0
cp

φ1 (1.3)

h2 = h̄2 +
1

gσ
(φ2 − φ1) (1.2) θ∗e2 = θ̄∗e2 +

10.3
cp

(φ2 − φ1) (1.4)

Air-sea interaction: Ekman pumping:

U =
(

u2
0 + v2

0

)1/2
(1.5) w = −h0

∂(ru0)

r∂r
(1.7)

cE = cD = (0.5 + 0.06 U) · 10−3 (1.6) w± = 1
2 (|w| ± w) (1.8)

Diabatic mass flux:

η = 1 +
θe0 − θ∗e2
θ∗e2 − θe1

(1.9) Q = Q+ −Q− with Q+ = ηw+ (1.10)

PROGNOSTIC EQUATIONS:

Radial wind components:
∂u0

∂t
+ u0

∂u0

∂r
−
(

f +
v0

r

)
v0 +

∂φ1

∂r
= F0 (1.11)

∂u1

∂t
+ u1

∂u1

∂r
−
(

f +
v1

r

)
v1 +

∂φ1

∂r
= F1 (1.12)

∂u2

∂t
+ u2

∂u2

∂r
−
(

f +
v2

r

)
v2 +

∂φ2

∂r
= F2 (1.13)

Tangential wind components:
∂v0

∂t
+ u0

∂v0

∂r
+
(

f +
v0

r

)
u0 = G0 (1.14)

∂v1

∂t
+ u1

∂v1

∂r
+
(

f +
v1

r

)
u1 = G1 (1.15)

∂v2

∂t
+ u2

∂v2

∂r
+
(

f +
v2

r

)
u2 = G2 (1.16)

Geopotential anomalies:

∂φ1

∂t
+ g

∂[r(u1h1 + u2εh2)]

r∂r
= gw (1.17)

∂φ2

∂t
+ g

∂[r(u1h1 + u2h2)]

r∂r
= g

(
w +

σ

ε
Q
)

(1.18)

Boundary layer equivalent potential temperature:

∂θe0

∂t
+ u0

∂θe0

∂r
+

w−

h0
(θe0 − θe1) =

cEU
h0

(θ∗es − θe0) (1.19)
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To include the effects of the warm core on convection, we need to interpret θ∗e2 in terms
of potential temperature, even though potential temperature does not appear explicitly in
the three-layer model. This can be accomplished by writing the hydrostatic equation for a
compressible fluid in the differential form d(φ− φ̄) = −cp(θ − θ̄) d(p/p00)

κ , where φ− φ̄
is the deviation of the geopotential φ from its far-field value φ̄, θ − θ̄ is the deviation of the
potential temperature θ from its far-field value θ̄, p00 = 1000 hPa is the reference pressure,
and κ = R/cp. Based on a discrete form of this hydrostatic equation, it is reasonable to
define the middle-tropospheric potential temperature anomaly θm − θ̄m, where θ̄m is the
middle-tropospheric potential temperature in the far field, as

cp
(
θm − θ̄m

)
=

φ2 − φ1

(0.7)κ − (0.3)κ
= 5.15(φ2 − φ1), (11)

where we use 700 and 300 hPa as representative values of the pressure in the upper
two layers. Thus, in the context of the three-layer model, φ2 − φ1 can be interpreted as
proportional to the middle-tropospheric potential temperature anomaly. Using a Taylor
series approximation (or simple inspection of the upper tropospheric spacing of θ-lines
and θ∗e -lines on a thermodynamic diagram), we can justify the approximation θ∗e2 = θ̄∗e2 +
2.0(θm − θ̄m), where θ̄∗e2 is the upper layer saturation equivalent potential temperature
in the far field. Combining this approximation with (11) yields Equation (1.4) of Table 1.
The spatial and temporal dependence of θ∗e2 can serve as an important negative feedback
on tropical cyclone intensification, since an evolving warm core can reduce θe0 − θ∗e2 and
hence reduce η via Equation (1.9).

The equivalent potential temperature is predicted only in the lowest layer. In flux
form, the boundary layer equivalent potential temperature equation is

∂(h0θe0)

∂t
+

∂(rh0u0θe0)

r∂r
+ w+θe0 − w−θe1 = cEU(θ∗es − θe0), (12)

where cE is the exchange coefficient, U = (u2
0 + v2

0)
1/2 is the boundary layer wind speed,

and θ∗es is the saturation equivalent potential temperature at the sea-surface temperature
and pressure. When (12) is converted to advective form, we obtain Equation (1.19) of
Table 1. Important controls on moist convection occur in the terms of (1.19). In the tropical
cyclone inner region, where there is boundary layer pumping (w > 0 so that w− = 0),
the term w−(θe0 − θe1)/h0 vanishes. However, in the tropical cyclone outer region, where
there is boundary layer suction (w < 0 so that w− > 0), the term w−(θe0 − θe1)/h0 is
positive and tends to produce a decrease of boundary layer equivalent potential tem-
perature through the downward transport of dry middle-tropospheric air (θe1 < θe0).
Air–sea interaction plays a crucial role in maintaining high values of θe0 through the surface
flux term cEU(θ∗es − θe0)/h0. The factor cEU becomes large in regions of high surface winds,
while the saturation equivalent potential temperature at the sea surface (θ∗es) becomes
large in regions where the surface pressure is low, an effect that is incorporated through
Equation (1.3) of Table 1. Both effects enhance the surface flux cEU(θ∗es − θe0) and can main-
tain θe0 > θ∗e2, and hence η slightly larger than unity, even though an upper tropospheric
warm core is being produced and θ∗e2 is increasing through Equation (1.4).

Since θ∗es depends on both the sea surface temperature and pressure, and since the sea
surface pressure depends on φ1, we should regard θ∗es as a dependent variable that increases
as the sea surface pressure decreases. Using a Taylor series approximation (or simple
inspection of the lower tropospheric spacing of p-lines and θ∗e -lines on a thermodynamic
diagram) the dependent variable θ∗es can be parameterized as given in Equation (1.3) of
Table 1. Thus, in the far field, where the geopotential anomaly φ1 is very small, the value
of θ∗es is θ̄∗es = 372 K for the typical case examined in Section 8. However, if φ1 in the inner
core is approximately −5000 m2s−2 (i.e., a −50 hPa sea surface pressure anomaly), then the
value of θ∗es is locally increased to 382 K. This dependence of θ∗es on φ1 plays an important
role in enhancing the surface flux of θe in the inner core of the vortex. Finally, we list in
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Equation (1.6) the assumed cD and cE formulas used by Ooyama for his standard case.
The results of some very interesting experiments with other parameterizations for cD and
cE are discussed by Ooyama ([2], Section 14).

The nine prognostic variables of the primitive equation model are u0(r, t), u1(r, t),
u2(r, t), v0(r, t), v1(r, t), v2(r, t), φ1(r, t), φ2(r, t), and θe0(r, t), so all the other variables are
diagnostic. The steps of the numerical integration procedure start with knowledge of these
nine prognostic variables, either from the initial conditions or from the previous time step.
The procedure for advancing one time level is as follows:

1. Specify desired values for the various fixed parameters: g, cp, f , ε or σ = 1− ε, h0,
h̄1, h̄2, θ̄∗es, θ̄∗e2, θe1, Q−, µ, and K, where K is the constant kinematic coefficient of eddy
viscosity appearing in the equations for the horizontal diffusive fluxes given in (A2)
and (A4) in Appendix A.

2. Using the known geopotential anomalies φ1(r, t) and φ2(r, t), diagnose the layer
depths h1(r, t) and h2(r, t) from (1.1) and (1.2), the sea-surface saturation equiva-
lent potential temperature θ∗es(r, t) from (1.3), and the upper tropospheric saturation
equivalent potential temperature θ∗e2(r, t) from (1.4).

3. Compute the boundary layer wind speed U(r, t) from (1.5), and then the exchange
coefficient cE(r, t) and the drag coefficient cD(r, t) from (1.6).

4. Using (1.7), diagnose the boundary layer vertical velocity w(r, t) from the known
boundary layer radial velocity u0(r, t), then compute w+(r, t) and w−(r, t) from (1.8).

5. Using the constant θe1, the diagnosed θ∗e2(r, t), and the known θe0(r, t), diagnose the
entrainment parameter η(r, t) from (1.9); then, compute the diabatic mass flux Q(r, t)
from (1.10).

6. Using the definitions of Fj(r, t) and Gj(r, t) given in (9) and (10), predict new values
of the radial and tangential wind components from (1.11)–(1.16).

7. Using the known radial velocity components u1(r, t) and u2(r, t), predict the geopo-
tential anomalies φ1(r, t) and φ2(r, t) via (1.17) and (1.18).

8. Using the known boundary layer radial velocity u0(r, t), the diagnosed boundary layer
suction w−(r, t), and the diagnosed θ∗es(r, t), predict the boundary layer equivalent
potential temperature θe0(r, t) via (1.19), and then return to step 2 for the beginning of
the next time step.

The dynamical core of this model has no explicit thermodynamics. Since there is a
discontinuity in the density at the interface between layers 1 and 2, we can regard this
interface as containing many constant-density surfaces packed closely together. Through
the analogy between density surfaces and potential temperature surfaces (see [3]), we can
also regard this interface as containing many closely packed θ surfaces. The mass flux
Q+ can therefore be regarded as being due to latent heat release in the moist convective
updrafts that carry cloudy air across θ surfaces into the upper troposphere. The four
models discussed here connect Q+ to boundary layer convergence, boundary layer θe,
and upper tropospheric temperature in a very simple way. It should be noted that non-
hydrostatic, full-physics models of tropical cyclones explicitly model the details of water
and ice microphysics, the different categories of ice, the different fall velocities of liquid
and ice, the role of aerosols in the size distributions of condensate, etc. The simplified
three-layer models presented here neglect all such microphysical details, but do capture
the most fundamental effect of precipitating moist convection, i.e., the convective mass
flux across θ surfaces from the lower troposphere to the upper troposphere. The dynamical
adjustments to this mass flux are what produce the lower tropospheric cyclone and the
upper tropospheric anticyclone.

Equations (1.1)–(1.19) constitute one of the simplest PE models capable of simulating
tropical cyclone life cycles, including intensification, the formation of boundary layer
shocks, and the development of an eyewall.
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3. Hybrid Balanced Model 1 (HB1)

The equations for the HB1 model are listed in Table 2. The most obvious difference
between Tables 1 and 2 is that for HB1 the number of diagnostic equations has increased
from ten to fourteen, while the number of prognostic equations has decreased from nine
to five. The ten diagnostic equations in Table 1 carry over directly to Table 2, and four
additional diagnostic equations appear. In the HB1 model, the prognostic equations for u1
and u2 are discarded and replaced by the gradient wind relations (2.11) and (2.12). With
gradient balance in the middle and upper layers, the predictions of v1 and v2 are redundant
with the predictions of φ1 and φ2. In other words, taking the local time derivative of the
gradient wind equation yields(

f +
2vj

r

)
∂vj

∂t
=

∂

∂r

(
∂φj

∂t

)
for j = 1, 2. (13)

Using the tangential wind equation to eliminate (∂vj/∂t) and the mass continuity principle
to eliminate (∂φj/∂t), we obtain the diagnostic Equations (2.13) and (2.14) of Table 2, where
the local inertial stability Sj in layer j is defined by

Sj =

(
f +

2vj

r

)( f + ζ j

ghj

)
=

(
f +

2vj

r

) Pj

gh̄j
for j = 1, 2 (14)

where ζ j = ∂(rvj)/r∂r is the relative vorticity in layer j and Pj = ( f + ζ j)h̄j/hj is the
potential vorticity in layer j. Equations (2.13) and (2.14) constitute a coupled pair of second
order diagnostic equations (i.e., the Eliassen transverse circulation equations given in
reference [4]) for the radial mass fluxes ψ1 = −ru1h1 and ψ2 = −ru2εh2. These radial mass
fluxes are forced by the diabatic and frictional effects that appear on the right-hand sides
of (2.13) and (2.14), while the spatial distribution of these fluxes is shaped by the inertial
stability factors on the left-hand sides. Since (2.13) and (2.14) are diagnostic equations, an
instantaneous change in the diabatic and frictional forcing produces an immediate response
in the entire fluid. This “action at a distance” property does not occur in the PE model
since fluctuations of the inner core forcing excite inertia-gravity waves, which require a
finite time to spread information laterally and thereby adjust the radial mass fluxes in the
surrounding fluid.

The forcing terms on the right-hand side of the transverse circulation Equations (2.13)
and (2.14) involve G1, G2, (∂w/∂r), and (∂Q/∂r). For the idealized situation in which the
absolute angular momentum is materially conserved in the upper two layers, we have
G1 = G2 = 0, so the forcing of the transverse circulation then involves only the radial
derivatives of the boundary layer pumping w and the diabatic mass flux Q. If the diabatic
mass flux Q were to vanish and w were to be largest at the center of the vortex, then
(∂w/∂r) < 0 over a core region, which results in u1 > 0 and u2 > 0, with the relative
magnitudes of u1 and u2 determined by the relative magnitudes of the inertial stability
factors S1 and S2. Such radial outflow leads to the spin-down (at all radii) of the cyclonic
vortex in layers 1 and 2. As discussed by Greenspan and Howard [5] and Greenspan ([6],
Sections 2.3 and 2.4), this is what occurs in a laminar Ekman layer with a no-slip lower
boundary condition. However, as discussed by Eliassen and Lystad [7], the situation is
different in a turbulent Ekman layer with a thin Prandtl surface layer and stress condition at
the lower boundary. In that case, the Ekman pumping does not maximize at the vortex axis,
but rather at some finite radius. This effect seems crucial in understanding the structure of
the eye and eyewall. All four models discussed here can simulate this important effect.
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Table 2. Summary of the HB1 model. The upper half of the table lists the diagnostic equations, while
the lower half lists the five prognostic equations. As indicated in (2.11) and (2.12), gradient balance
is assumed in the upper two layers, but, as indicated in (2.15) and (2.16), the primitive forms of the
momentum equations are retained in the boundary layer, thus allowing the formation of boundary
layer shocks. Because the prognostic equations for u1(r, t) and u2(r, t) have been discarded and
replaced by the coupled Eliassen Equations (2.13) and (2.14), propagating inertia-gravity waves
are filtered in the HB1 model. A sufficient (but not necessary) condition for the uniqueness of the
solutions ψ1, ψ2 of the Eliassen equations is that S1 ≥ 0 and S2 ≥ 0. Numerical integrations of the
Eliassen equations reveal that S2 can become negative at some distance from the cyclone center, but
no difficulty is encountered in the solution of the discretized Eliassen equations if a direct method of
solution (such as Gaussian elimination) is used.

Hybrid Balanced Model 1 (HB1)

DIAGNOSTIC EQUATIONS:

Layer thicknesses: Saturation equivalent potential temperatures:

h1 = h̄1 +
1

gσ
(φ1 − εφ2) (2.1) θ∗es = θ̄∗es −

2.0
cp

φ1 (2.3)

h2 = h̄2 +
1

gσ
(φ2 − φ1) (2.2) θ∗e2 = θ̄∗e2 +

10.3
cp

(φ2 − φ1) (2.4)

Air-sea interaction: Ekman pumping:

U =
(

u2
0 + v2

0

)1/2
(2.5) w = −h0

∂(ru0)

r∂r
(2.7)

cE = cD = (0.5 + 0.06 U) · 10−3 (2.6) w± = 1
2 (|w| ± w) (2.8)

Diabatic mass flux: Gradient balance equations:

η = 1 +
θe0 − θ∗e2
θ∗e2 − θe1

(2.9)
(

f +
v1

r

)
v1 =

∂φ1

∂r
(2.11)

Q = Q+ −Q− with Q+ = ηw+ (2.10)
(

f +
v2

r

)
v2 =

∂φ2

∂r
(2.12)

Transverse circulation: (where ψ1 = −ru1h1 and ψ2 = −ru2εh2)

r
∂

∂r

(
∂(ψ1 + ψ2)

r∂r

)
− S1ψ1 =

1
g

(
f +

2v1

r

)
rG1 − r

∂w
∂r

(2.13)

r
∂

∂r

(
∂(ψ1 + ε−1ψ2)

r∂r

)
− S2ε−1ψ2 =

1
g

(
f +

2v2

r

)
rG2 − r

∂

∂r

(
w +

σ

ε
Q
)

(2.14)

PROGNOSTIC EQUATIONS:

Boundary layer radial and tangential wind components:
∂u0

∂t
+ u0

∂u0

∂r
−
(

f +
v0

r

)
v0 +

∂φ1

∂r
= F0 (2.15)

∂v0

∂t
+ u0

∂v0

∂r
+
(

f +
v0

r

)
u0 = G0 (2.16)

Geopotential anomalies:

∂φ1

∂t
= g

∂(ψ1 + ψ2)

r∂r
+ gw (2.17)

∂φ2

∂t
= g

∂(ψ1 + ε−1ψ2)

r∂r
+ g
(

w +
σ

ε
Q
)

(2.18)

Boundary layer equivalent potential temperature:

∂θe0

∂t
+ u0

∂θe0

∂r
+

w−

h0
(θe0 − θe1) =

cEU
h0

(θ∗es − θe0) (2.19)
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The five prognostic variables of the HB1 model are u0(r, t), v0(r, t), φ1(r, t), φ2(r, t),
and θe0(r, t), so all the other variables are diagnostic. HB1 is “hybrid” in the sense
that gradient balance is used in the upper two layers but not in the boundary layer.
The steps of the numerical integration procedure start with knowledge of these five
prognostic variables, either from the initial conditions or from the previous time step.
The procedure for advancing one time level is very similar to that outlined in the previous
section for the PE model.

4. Hybrid Balanced Model 2 (HB2)

The equations for the HB2 model are listed in Table 3. The most obvious difference
between Tables 2 and 3 is that for HB2 the number of prognostic equations has decreased
from five to three. The diagnostic equations in Table 2 carry over directly to Table 3, and
two additional diagnostic equations appear. In the HB2 model the prognostic equations for
u0 and v0 have been discarded and replaced by the diagnostic relations (3.15) and (3.16),
which are essentially quasi-steady state versions of (2.15) and (2.16). Ooyama [1] argued
that the system of boundary layer diagnostic primitive Equations (3.15) and (3.16) can
be numerically integrated (radially inward) under appropriate boundary conditions on
u0 and v0 at a large radius (1000 km, say). He did not impose boundary conditions at
r = 0, but found that u0 and v0 approach zero as r goes to zero, which is obviously a relief
but not an entirely satisfactory result. Frisius and Lee [8] provided a different, and quite
successful, approach to this issue. Since the equations contain both a forcing term (the
imposed horizontal pressure gradient of the overlying layer) and surface friction terms, the
solutions u0 and v0 are determined more or less locally. Here, we use the term “semi-local”
as synonymous with Ooyama’s “more or less local”’. Note that Ooyama’s research with
the HB2 model [1] was published in the Proceedings of the WMO/IUGG Symposium
on NWP, held in Tokyo in 1968. That work is an extension of his modeling work with
the GB model on the life cycle of tropical cyclones [2] and shows the importance of the
u0(∂u0/∂r) term in shaping the boundary layer pumping and thus influencing storm size
and intensification rate. A comparison between HB1 and GB will be provided in Section 8.
Although Ooyama’s HB2 model work [1] is less well-known than his GB model work [2], it
is a fundamental contribution to our understanding of tropical cyclones. Finally, it might
be said that, without due caution, solving for the boundary layer winds u0 and v0 in HB2
can be fraught with danger, in the sense that a particular numerical method may become
erratic as it tries to produce multivalued solutions [9,10].

5. Gradient Balanced Model (GB)

The equations for the gradient balanced model are listed in Table 4. The only differ-
ences between Tables 3 and 4 are that for the GB model, the gradient balance assumption
has also been used for the boundary layer and the boundary layer tangential wind equa-
tion has been replaced by the local relation (4.15), which is essentially a high Rossby
number version of Ekman balance. In spite of the simplicity of the GB model, it is fairly
successful at simulating the life cycle of tropical cyclones. However, as discussed by
Williams et al. [11], one deficiency of the GB model is its inability to simulate the formation
of boundary layer shock-like structures in the radial wind and hence the very concentrated
boundary layer pumping associated with eyewalls. This deficiency is primarily due to the
neglect of the u0(∂u0/∂r) term in the boundary layer dynamics of the GB model.

Ooyama extensively studied the GB model [2] and concluded that this model is
capable of simulating many aspects of developing and mature tropical cyclones, including
the importance of the oceanic latent heat supply. However, one obvious defect of the GB
model is the production of a radius of maximum wind that is too large and that expands
too rapidly with time. It was hypothesized that this defect is related to the use of the
gradient balance approximation in the boundary layer. Therefore, Ooyama proposed the
HB2 model [1], which differs from the GB model only in the sense that the boundary
layer wind components u0 and v0 are computed using the quasi-steady state form of the
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boundary layer primitive equations, i.e., using the boundary layer equations listed as (3.15)
and (3.16) of Table 3.

Table 3. Summary of the HB2 model. The upper half of the table lists the diagnostic equations,
while the lower half lists the three prognostic equations. Some results from this model were
given by Ooyama [1], who discussed how the results differ from the GB model shown in Table 4.
These differences between HB2 and GB are discussed in Section 8, along with the observation
that the numerical solution of the nonlocal diagnostic Equations (3.15) and (3.16) can lead to
mathematical difficulties.

Hybrid Balanced Model 2 (HB2)

DIAGNOSTIC EQUATIONS:

Layer thicknesses: Saturation equivalent potential temperatures:

h1 = h̄1 +
1

gσ
(φ1 − εφ2) (3.1) θ∗es = θ̄∗es −

2.0
cp

φ1 (3.3)

h2 = h̄2 +
1

gσ
(φ2 − φ1) (3.2) θ∗e2 = θ̄∗e2 +

10.3
cp

(φ2 − φ1) (3.4)

Air-sea interaction: Ekman pumping:

U =
(

u2
0 + v2

0

)1/2
(3.5) w = −h0

∂(ru0)

r∂r
(3.7)

cE = cD = (0.5 + 0.06 U) · 10−3 (3.6) w± = 1
2 (|w| ± w) (3.8)

Diabatic mass flux: Gradient balance equations:

η = 1 +
θe0 − θ∗e2
θ∗e2 − θe1

(3.9)
(

f +
v1

r

)
v1 =

∂φ1

∂r
(3.11)

Q = Q+ −Q− with Q+ = ηw+ (3.10)
(

f +
v2

r

)
v2 =

∂φ2

∂r
(3.12)

Transverse circulation: (where ψ1 = −ru1h1 and ψ2 = −ru2εh2)

r
∂

∂r

(
∂(ψ1 + ψ2)

r∂r

)
− S1ψ1 =

1
g

(
f +

2v1

r

)
rG1 − r

∂w
∂r

(3.13)

r
∂

∂r

(
∂(ψ1 + ε−1ψ2)

r∂r

)
− S2ε−1ψ2 =

1
g

(
f +

2v2

r

)
rG2 − r

∂

∂r

(
w +

σ

ε
Q
)

(3.14)

Boundary layer flow:

u0
∂u0

∂r
−
(

f +
v0

r

)
v0 +

∂φ1

∂r
= F0 (3.15) ( f + ζ0)u0 +

w−(v0 − v1)

h0
+

cDU
h0

v0 = 0 (3.16)

PROGNOSTIC EQUATIONS:

Geopotential anomalies:

∂φ1

∂t
= g

∂(ψ1 + ψ2)

r∂r
+ gw (3.17)

∂φ2

∂t
= g

∂(ψ1 + ε−1ψ2)

r∂r
+ g
(

w +
σ

ε
Q
)

(3.18)

Boundary layer equivalent potential temperature:

∂θe0

∂t
+ u0

∂θe0

∂r
+

w−

h0
(θe0 − θe1) =

cEU
h0

(θ∗es − θe0) (3.19)
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Table 4. Summary of the GB model. The upper half of the table lists the diagnostic equations,
while the lower half lists the three prognostic equations. Note that the boundary layer radial inflow
u0(r, t) and the boundary layer pumping w(r, t) are computed from (4.15) and (4.7), which are local
diagnostic relations. This differs from the other three models in which the boundary layer dynamics
is nonlocal. Although the boundary layer radial flow u0(r, t), determined by (4.15), can vary rapidly
in r because ζ1(r, t) varies rapidly in r, true boundary layer shocks are not produced in the GB model
because of the local nature of the simplified boundary layer dynamics. An extensive set of numerical
integrations using this model is given by Ooyama [2].

Gradient Balanced Model (GB)

DIAGNOSTIC EQUATIONS:

Layer thicknesses: Saturation equivalent potential temperatures:

h1 = h̄1 +
1

gσ
(φ1 − εφ2) (4.1) θ∗es = θ̄∗es −

2.0
cp

φ1 (4.3)

h2 = h̄2 +
1

gσ
(φ2 − φ1) (4.2) θ∗e2 = θ̄∗e2 +

10.3
cp

(φ2 − φ1) (4.4)

Air-sea interaction: Ekman pumping:

U = |v0| (4.5) w = −h0
∂(ru0)

r∂r
(4.7)

cE = cD = (0.5 + 0.06 U) · 10−3 (4.6) w± = 1
2 (|w| ± w) (4.8)

Diabatic mass flux: Gradient balance equations:

η = 1 +
θe0 − θ∗e2
θ∗e2 − θe1

(4.9)
(

f +
v1

r

)
v1 =

∂φ1

∂r
(4.11)

Q = Q+ −Q− with Q+ = ηw+ (4.10)
(

f +
v2

r

)
v2 =

∂φ2

∂r
(4.12)

Transverse circulation: (where ψ1 = −ru1h1 and ψ2 = −ru2εh2)

r
∂

∂r

(
∂(ψ1 + ψ2)

r∂r

)
− S1ψ1 =

1
g

(
f +

2v1

r

)
rG1 − r

∂w
∂r

(4.13)

r
∂

∂r

(
∂(ψ1 + ε−1ψ2)

r∂r

)
− S2ε−1ψ2 =

1
g

(
f +

2v2

r

)
rG2 − r

∂

∂r

(
w +

σ

ε
Q
)

(4.14)

Boundary layer flow:

u0 = − cDUv0

h0( f + ζ1)
(4.15) v0 = v1 (4.16)

PROGNOSTIC EQUATIONS:

Geopotential anomalies:

∂φ1

∂t
= g

∂(ψ1 + ψ2)

r∂r
+ gw (4.17)

∂φ2

∂t
= g

∂(ψ1 + ε−1ψ2)

r∂r
+ g
(

w +
σ

ε
Q
)

(4.18)

Boundary layer equivalent potential temperature:

∂θe0

∂t
+ u0

∂θe0

∂r
+

w−

h0
(θe0 − θe1) =

cEU
h0

(θ∗es − θe0) (4.19)

6. Isolating the Slab Boundary Layer Model from the PE and HB1 Models

To understand the important role of boundary layer dynamics in shaping the spatial
distribution of convective mass flux, it is useful to isolate the slab boundary layer equations
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from the PE model equations of Table 1 and the HB1 model equations of Table 2. This can
be accomplished by assuming that µ = 0, u1 is negligible, and v1 is the specified gradient
wind vgr(r, t), where (

f +
vgr

r

)
vgr =

∂φ1

∂r
. (15)

With these assumptions, the boundary layer radial, tangential, and continuity equations
become

∂u0

∂t
+ u0

∂u0

∂r
+

w−

h0
u0 −

(
f +

v0 + vgr

r

)(
v0 − vgr

)
= −cDU

u0

h0
+ K

∂

∂r

(
∂(ru0)

r∂r

)
,

∂v0

∂t
+ u0

∂v0

∂r
+

w−

h0

(
v0 − vgr

)
+
(

f +
v0

r

)
u0 = −cDU

v0

h0
+ K

∂

∂r

(
∂(rv0)

r∂r

)
,

w = −h0
∂(ru0)

r∂r
, w− = 1

2 (|w| − w).

(16)

We can regard (16) as a closed system in u0(r, t), v0(r, t), w(r, t), and w−(r, t), with
the imposed pressure gradient force specified in terms of vgr(r, t). As discussed by
Williams et al. [11], in the absence of horizontal diffusion terms, the slab boundary layer
Equations (16) form a hyperbolic system, which means that it can be written in charac-
teristic form. The derivation of this characteristic form was given by Slocum et al. [12],
whose Equations (A.13) and (A.14) show that in regions where w < 0 there are two families
of characteristics, one given by (dr/dt) = 2u and one given by (dr/dt) = u, while in
regions where w > 0 there is only one family of characteristics, given by (dr/dt) = u.
Since these characteristics can intersect, there is the possibility of shocks developing, result-
ing in discontinuities in u and v and singularities in w and ζ.

The high-resolution (∆r = 100 m) numerical solutions of (16) presented by
Williams et al. [11] and Slocum et al. [12] do contain near-singularities in the boundary
layer pumping w(r, t) and the vorticity ζ(r, t). Obviously, true singularities do not occur in
nature; their mathematical existence reflects the simplicity of the physics included in (16).
In a three-dimensional, non-hydrostatic, full-physics hurricane model, spikes in the radial
distribution of boundary layer pumping might be expected to collapse to the spatial scale
of an individual cumulonimbus cloud, within which the vertical velocity would be limited
by non-hydrostatic moist physics. Such full-physics simulations of Supertyphoon Haiyan
(2013) have been performed by Tsujino and Kuo [13]. In their paper, Figures 10 and 12
illustrate the development of a near-singularity in the vertical motion field (w ≈ 20 m s−1)
at z ≈ 434 m and r ≈ 20 km, if the horizontal resolution of their three-dimensional CReSS
model is reduced to ∆x = ∆y = 500 m.

7. Potential Vorticity Aspects of the Models

Since it can lead to additional insights, it is interesting to interpret the four models in
terms of potential vorticity (PV) dynamics (see [14–17]). Although the four models differ in
their treatment of the boundary layer, they have identical continuity equations and angular
momentum equations in the two main layers. Thus, all four models have the same PV
dynamics in the main layers. Note that because h0 is a constant, there is no difference
between vorticity and potential vorticity in the boundary layer. The PV equations for the
two main layers are

D1P1

Dt
= P1

(
Q− w

h1

)
+

h̄1

h1

∂(rG1)

r∂r
,

D2P2

Dt
= −P2

(
Q

εh2

)
+

h̄2

h2

∂(rG2)

r∂r
, (17)

where Dj/Dt = (∂/∂t) + uj(∂/∂r) and Pj = ( f + ζ j)(h̄j/hj) for j = 1, 2. Since the HB1,
HB2, and GB models use gradient wind balance, these three models possess an invertibility
principle relating v1, v2, P1, P2. This invertibility principle is obtained by taking (∂/∂r)
of h̄j( f + ζ j) = hjPj to obtain h̄j(∂ζ j/∂r) − Pj(∂hj/∂r) = hj(∂Pj/∂r). Then, expressing
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(∂hj/∂r) in terms of (∂φj/∂r), and making use of the gradient wind relation ( f + vj/r)vj =
(∂φj/∂r), we obtain

∂

∂r

(
∂(rv1)

r∂r

)
− P1

gσh̄1

[(
f +

v1

r

)
v1 − ε

(
f +

v2

r

)
v2

]
=

h1

h̄1

∂P1

∂r
,

∂

∂r

(
∂(rv2)

r∂r

)
− P2

gσh̄2

[(
f +

v2

r

)
v2 −

(
f +

v1

r

)
v1

]
=

h2

h̄2

∂P2

∂r
.

(18)

This is a pair of coupled, second order equations for v1(r, t) and v2(r, t), knowing the
potential vorticity fields P1(r, t) and P2(r, t) predicted from (17).

Neglecting the G1 and G2 terms in (17) and considering the conditionally unstable vortex
core region where η > 1 and w > 0, the PV equations take the form (D1P1/Dt) = (P1/h1)(η−
1)w and (D2P2/Dt) = −(P2/εh2)ηw, so that (D1P1/Dt) > 0 and (D2P2/Dt) < 0 there.
Note that, if the development of the upper tropospheric warm core reduces η to unity, this
serves as a brake on the otherwise exponential growth of P1. Very large values of P1 in the
vortex core result not only in large cyclonic flow in layer 1 but also in substantial cyclonic
flow in layer 2, a result that can be attributed to the coupling between the two equations
in (18).

Ooyama performed a linear stability analysis of the GB model ([2], Section 8).
In this simplified linear analysis, curvature effects are neglected, so axisymmetry is replaced
by line-symmetry and gradient balance is replaced by geostrophic balance. The problem
is reduced to the coupled equations for φ1 and φ2 listed in his entry (8.8). Although he
does not interpret these equations as PV equations, they can easily be rearranged into the
PV forms

∂

∂t

(
∂2φ1

∂r2 −
f 2(φ1 − εφ2)

gσh̄

)
=

(η̄ − 1)ks

h̄
∂2φ1

∂r2 ,

∂

∂t

(
∂2φ2

∂r2 −
f 2(φ2 − φ1)

gσh̄

)
= − η̄ks

εh̄
∂2φ1

∂r2 ,

(19)

where h̄ is the basic state depth of each layer, η̄ is the basic state entrainment parameter,
and the constant ks corresponds to cDU. The two quantities in large parentheses in (19)
are proportional to the perturbation PV in each layer, with (∂2φ1/∂r2) and (∂2φ2/∂r2)
proportional to the relative vorticity in the two layers. The two terms on the right-hand sides
of (19), which are proportional to ks(∂2φ1/∂r2), represent the effects of Ekman pumping.
When coupled with convective mass fluxes and with η̄ > 1, these terms result in an inner
core increase of PV in layer 1 and a decrease in layer 2. During such a linear “CISK” process,
both the primary and secondary circulations grow exponentially with time. However, in
the nonlinear context, described for layer 1 by (D1P1/Dt) = (P1/h1)(η − 1)w, the PV can
grow exponentially even when the secondary circulation and (η − 1)w are nearly fixed in
time. Since the assumptions of linear dynamics are violated even in tropical depressions
(see the caption of Table 5), it follows that it is the P1 factor in (P1/h1)(η − 1)w that is
most relevant to tropical cyclone rapid intensification, with the factor (η − 1) serving as
a convective limiter on the intensification process. Recently, Hendricks et al. [18] have
developed a shallow water axisymmetric model for intensification (SWAMI) and have
shown how a PV limiter is important for the practical use of their model.

8. Concluding Remarks

A comparison of the four models is given in Figure 2. The dependent variables of the
four models are listed in the left column. The variables h1, h2, θ∗es, θ∗e2, U, cD , cE , w, w±, η,
and Q are diagnostic in all models, while the variables φ1, φ2, and θe0 are prognostic in all
models. The boundary layer wind components u0 and v0 are prognostic in the PE and HB1
models, but are diagnostic in the HB2 and GB models; this is related to the appearance
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of boundary layer shocks, as indicated by the inner arrow on the right. The radial and
tangential wind components u1, u2, v1, and v2 are prognostic in the PE model but are
diagnostic in the HB1, HB2 and GB models; this is related to the occurrence of propagating
inertia-gravity waves, as indicated by the outer arrow on the right.

Model Variable
or Behavior

Three-Layer Model
PE HB1 HB2 GB

Allows Boundary
Layer Shocks?

Allows Inertia-
Gravity Waves?

h1 and h2

θ∗es and θ∗e2
U and c

E
= c

D

w and w±

η and Q

v1 and v2

{u1, u2} or {ψ1, ψ2}

u0

v0

φ1 and φ2

θe0
Prognostic Variables

Diagnostic Variables

semi-
local

fully
local

Yes No

Figure 2. Comparison of the diagnostic and prognostic variables from the four models. The left
column lists the model variables, all of which are functions of r and t. For the PE model, the bottom
nine variables are prognostic, and all the remaining variables (above them in the table) are diagnostic.
For the HB1 model, only the bottom five variables are prognostic, and four variables ({u1, u2} or
{ψ1, ψ2}, v1, and v2) that are prognostic for the PE model are now diagnostic. For the HB2 and
GB models, just the bottom three variables are prognostic with two variables (u0 and v0) that are
prognostic for the PE and HB1 models now being diagnostic. The PE model allows propagating
inertia-gravity waves in the upper two layers, while the other three models filter these waves because
the radial components u1 and u2 are determined diagnostically, as indicated by the outer arrow on the
right. Because of the form of their u0 and v0 equations, the PE and HB1 models allow the formation
of well-defined boundary layer shocks, as indicated by the inner arrow on the right.

Through a comparison of the GB model Equations (Table 4) with the HB2 model
Equations (Table 3), it is apparent that the only difference in the model equations is the more
general, nonlocal boundary layer dynamics of the HB2 model. However, this difference
leads to significant changes to the tropical cyclone life cycles simulated by the two models.
These result from different Ekman pumping distributions. To illustrate these differences,
Ooyama made comparison runs [1] using the constants listed in Table 5, the initial condition
φ2(r, 0) = 0, and with the initial φ1(r, 0) in gradient balance with

v1(r, 0) = v̂
(

2(r/r̂)
1 + (r/r̂)2

)
, (20)

where the constants r̂ and v̂ are also given in Table 5. The initial condition on θe0(r, 0) is
determined from η(r, 0) = 2. Ooyama found in a numerical test that the values of u0 and v0
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within 50 km from the vortex center are not influenced very much by their values outside
100 km. Solutions from HB2 are plotted as the solid curves in Figure 3 below (adapted
from [1], Figure 2) and show three features found in later modeling studies [9–12,19] and
also in observations of Hurricane Hugo [20]: (1) Subgradient boundary layer tangential
flow outside the radius of maximum wind; (2) Supergradient boundary layer tangential
flow near the radius of maximum wind; (3) Maximum Ekman pumping at a much smaller
radius than in the GB model, resulting in a tighter vortex that intensifies more rapidly.
As shown in Figure 3, the GB model produces an Ekman pumping with a 2 m s−1 maxi-
mum at r ≈ 60 km with a sharp edge on the outside of the eyewall, while the HB2 model
produces an Ekman pumping that maximizes at r ≈ 15 km with a sharp edge on the
inside of the eyewall. This difference is due to the u0(∂u0/∂r) term in the HB2 model,
i.e., to the nonlocal character of the boundary layer dynamics in HB2. This term leads
to a nearly discontinuous behavior of the boundary layer radial inflow near r ≈ 15 km,
and hence the maximum Ekman pumping there. This behavior of u0 in the HB2 model
indicates the danger of formulating the nonlocal boundary layer dynamics without hori-
zontal diffusion terms. If, without horizontal diffusion, the u0(∂u0/∂r) term leads to the
formation of a shock, the derivatives in the boundary layer equations can cease to exist,
and the equations are no longer a useful description of the physics near the shock. This
situation can be addressed by fitting in a shock condition or using horizontal diffusion to
prevent multivalued radial inflow. The latter was the approach originally suggested by
von Neumann and Richtmyer [21].

Table 5. Specified constants for the GB and HB2 model runs shown in Figure 3. Note that the large
value of the initial average vorticity inside r̂, given by 2v̂/r̂ = 8 f , makes linear CISK theory (see
Section 8 and references [2,22]) of limited use.

Parameter Value Parameter Value

ε 0.9 h0 1000 m
σ = 1− ε 0.1 h̄1 5000 m

g 9.81 m s−2 h̄2 5000 m
f 5× 10−5 s−1 θ̄∗es 372 K

cp 1004.5 J kg−1 K−1 θ̄∗e2 342 K
µ 5× 10−4 m s−1 θe1 332 K
K 1000 m2 s−1 v̂ 10 m s−1

Q− 0 m s−1 r̂ 50 km

A particular limitation of the Ooyama (1969) cumulus parameterization scheme is the
assumption that, if the column is conditionally unstable, the total cloud base vertical mass
flux due to deep convection is equal to the vertical mass flux associated with the larger-scale
horizontal convergence in the frictional boundary layer. Later studies showed that this
assumption is not consistent with observations and with non-hydrostatic, full-physics
models. For example, Yanai et al. [23] performed a heat and moisture budget analysis
using an array of five radiosonde stations in the Marshall Islands, which are located in
the tropical Pacific ITCZ. From the apparent heat source Q1 and the apparent moisture
sink Q2, and using a simple bulk cloud model, Yanai et al. found that for cloud clusters
in the ITCZ region, the total cloud base vertical mass flux is much larger than the vertical
mass flux associated with the horizontal convergence in the frictional boundary layer.
This conclusion about the vertical convective mass flux at the top of the boundary layer
in weak tropical disturbances has been confirmed by several other observational studies,
for example, [24–26]. However, as found by Smith et al. [27] using the full-physics CM1
model [28], this may not be the case for hurricanes and typhoons in their mature and
decaying phases.
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Figure 3. Comparison of the tangential winds v0 and v1 (a) and the Ekman pumping w (b) for
the gradient balanced model (GB, dashed lines) and the second hybrid model (HB2, solid lines)
at t = 146 h for a typical life cycle experiment. The vortex in HB2 is tighter and has gone
through a more rapid intensification than the vortex in GB. This difference in structure and in-
tensification rate is due to the striking differences in Ekman pumping, with the GB model hav-
ing its 2 m s−1 maximum w at r ≈ 60 km and the HB2 model having a similar maximum but at
r ≈ 15 km. This illustrates the fundamental importance of the u0(∂u0/∂r) term in the radial equation
of boundary layer motion in the HB2 model. Note that the boundary layer tangential flow v0 in
the HB2 model is slightly subgradient for r > 30 km and slightly supergradient for r < 30 km.
This subgradient/supergradient effect can be more apparent in strong storms such as Hurricane
Hugo (see [11,20]). Adapted from ([1], Figure 2).

In order to remove some of the limitations of the Ooyama model, Zhu et al. [29]
developed a three-layer, σ-coordinate tropical cyclone model with the option of explicit
moist physics or different types of parameterized moist physics. The parameterized moist
physics is primarily based on generalizations of the parameterization scheme designed
by Arakawa [30] for the original 3-layer version of the UCLA general circulation model.
An axisymmetric version of the Zhu et al. model was explored by Nguyen et al. [31], with
follow-up studies carried out by Zhu and Smith [32,33], and Zhu et al. [34]. Together, these
papers clarify the roles of shallow convection, precipitation-cooled downdrafts, and the
vertical transport of momentum by deep convection on the dynamics of tropical cyclone
intensification. Another family of simple hurricane models, not reviewed here, is the
Maximum Potential Intensity (MPI) family first proposed by Emanuel [35–37] to help
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understand the air–sea interaction aspects and the finite amplitude and steady-state aspects
of tropical cyclones. An extensive review of the MPI models and their use in understanding
the basic intensification process and longer-term evolution of tropical cyclones can be found
in recent reviews by Smith and Montgomery [38,39].

It is interesting to note that the family of models defined in Tables 1–4 and summa-
rized in Figure 2 has been organized in an unconventional manner. In the conventional
organization (for example with community models such as WRF) all members of the family
have the same dry dynamical core but have a variety of choices for the parameterized
moist physics and air–sea interaction. In contrast, the four models in Tables 1–4 and
Figure 2 all have the same parameterized moist physics and air–sea interaction but have
four different choices for the dry dynamical core. These two approaches to the organization
of model families seem complementary and useful for helping understand the physics of
tropical cyclones.

Other extensions of the four models listed in Tables 1–4 have been described by
Bliss [40] and DeMaria and Schubert [41], who relaxed the axisymmetric and balanced
assumptions and formulated the three-dimensional (spectral) problem on a middle latitude
β-plane to simulate storm motion. As another extension, DeMaria and Schubert [42,43]
have formulated a generalized version of the axisymmetric PE model (Table 1) in order to
apply the concepts of nonlinear normal mode analysis and initialization to the hurricane
problem. The four models listed in Tables 1–4 have no explicit thermodynamics, which
at first sight seems problematic for a model of a phenomenon that involves latent heat
release. However, DeMaria and Pickle [3] have shown that a model with explicit thermody-
namics, if formulated in terms of isentropic layers, is almost mathematically equivalent
to the incompressible layer model. The most complete comparisons of the four models of
Tables 1–4, along with several additional refinements, were given by Frisius and Lee [8],
who performed numerical integrations that were, in the core region, twenty times the
resolution (0.25 km vs. 5 km) used by Ooyama. Their results show additional fine structure
and generally confirm the coarser resolution results shown in Figure 3.

The PE model described in Table 1 is not the only one of the four models that can
be generalized to three dimensions. However, the generalizations of HB1, HB2, and
GB to three dimensions can become somewhat complicated. The reason is that these
involve generalizations of the classic ω-equation of quasi-geostrophic theory, which is
based on the selective use of the simplest relation between the wind and mass fields.
This quasi-geostrophic ω-equation is not valid for the inner core regions of intense tropical
cyclones because of the large Rossby numbers found for the highly curved flows in the core.
More general ω-equations that are valid for the high Rossby number flows in tropical
cyclones have been derived by Arakawa [44], Thompson [45,46], and Shapiro and Mont-
gomery [47]. These arguments are based on generalizations of gradient wind balance, e.g.,
on the nonlinear balance equation in the derivations of Arakawa and Thompson and on
asymmetric balance in the derivation of Shapiro and Montgomery. These generalized ω-
equations yield fully three-dimensional formulas for local inertial stability and local Rossby
length. These second-order, elliptic, ω-equations have the potential to provide diagnostic
tools for a better understanding of such problems as the role of large-scale vertical wind
shear on tropical cyclone structure and intensity change.

In closing, it is interesting to note that simple axisymmetric models have greatly
expanded our understanding of tropical cyclone dynamics. For additional research that
illustrates the rich history of these (and related models), see the studies by Emanuel [48,49],
Shapiro [50], Camp and Montgomery [51], Smith and Vogl [10], Smith and
Montgomery [52], Schecter and Dunkerton [53], Schecter [54,55], and Frisius et al. [56].
In many scientific fields, there is a tendency for the simplest models to experience a phase
in which they yield new, remarkable physical insights (e.g., the Bohr model of the hydrogen
atom, the Eady model of baroclinic instability, and the Ooyama model of tropical cyclones).
Later, these simple models are used less in the research literature but are still very useful for
introducing students to basic concepts. Although the simple family of tropical cyclone mod-
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els described in Tables 1–4 and Figure 2 may be entering their pedagogic phase, they may
still prove useful in providing an increased understanding of the remarkable inner-core,
lower-tropospheric structures observed in intense storms such as Hurricanes Hugo [20]
and Patricia [57].
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Appendix A. Derivation of the Momentum Equations

The logical starting points in the derivation of Equations (1.11)–(1.13) of Table 1 are the
conservation relations for the radial momentum in each layer. These conservation relations
can be written as

∂(h0u0)

∂t
+

∂(ru0h0u0)

r∂r
− h0

(
f +

v0

r

)
v0 + h0

∂φ1

∂r
=− u0w+ + u1w− − µ(u0 − u1)

− cDUu0 +
∂Λ(u)

0
r2∂r

,

∂(h1u1)

∂t
+

∂(ru1h1u1)

r∂r
− h1

(
f +

v1

r

)
v1 + h1

∂φ1

∂r
= u0w+ − u1w−− µ(u1 − u0)

− u1Q+ + u2Q−− µ(u1 − u2)

+
∂Λ(u)

1
r2∂r

,

∂(εh2u2)

∂t
+

∂(ru2εh2u2)

r∂r
− εh2

(
f +

v2

r

)
v2 + εh2

∂φ2

∂r
= u1Q+ − u2Q− − µ(u2 − u1)

+
∂Λ(u)

2
r2∂r

,

(A1)

where f is the constant Coriolis parameter, cD is the drag coefficient, U =
(
u2

0 + v2
0
)1/2 is

the boundary layer wind speed, Q+ is the upward diabatic mass flux (heating) from layer
1 to layer 2, and Q− is the downward diabatic mass flux (cooling) from layer 2 to layer 1.
The horizontal diffusive fluxes for the u-equations are given by

Λ(u)
0 = Kh0r3 ∂(u0/r)

∂r
, Λ(u)

1 = Kh1r3 ∂(u1/r)
∂r

, Λ(u)
2 = Kεh2r3 ∂(u2/r)

∂r
, (A2)

with K denoting the constant kinematic coefficient of eddy viscosity. According to the first
entry in (A1) there are eight processes that can cause local time changes in the boundary
layer radial momentum: (i) radial divergence of the radial advective flux; (ii) the Coriolis
and centrifugal forces h0[ f + (v0/r)]v0; (iii) the radial pressure gradient force h0(∂φ1/∂r);
(iv) upward flux of u0 when w > 0; (v) downward flux of u1 when w < 0; (vi) turbulent
exchange of radial momentum between the lower two layers, through the term−µ(u0− u1);
(vii) loss of u0 through surface drag; (viii) radial divergence of the radial diffusive flux.
To convert the top entry of (A1) into an advective form, we differentiate the second term
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as a product of ru0h0 and u0 and then make use of the continuity Equation (6) to obtain
Equation (1.11) of Table 1. In a similar manner, the radial momentum conservation relations
for layers 1 and 2 can be converted to Equations (1.12) and (1.13) of Table 1, where the
right-hand side terms are defined in (9).

Similarly, the logical starting points in the derivation of (1.14)–(1.16) of Table 1 are the
conservation relations for the absolute angular momentum in each layer. These conserva-
tion relations can be written as

∂(h0m0)

∂t
+

∂(ru0h0m0)

r∂r
=−m0w+ + m1w− − µ(m0 −m1)− cDUrv0 +

∂Λ(m)
0

r∂r
,

∂(h1m1)

∂t
+

∂(ru1h1m1)

r∂r
= m0w+ −m1w− − µ(m1 −m0)−m1Q+ + m2Q−

− µ(m1 −m2) +
∂Λ(m)

1
r∂r

,

∂(εh2m2)

∂t
+

∂(ru2εh2m2)

r∂r
= m1Q+ −m2Q− − µ(m2 −m1) +

∂Λ(m)
2

r∂r
,

(A3)

where mj = rvj +
1
2 f r2 is the absolute angular momentum per unit mass in layer j, and

where the horizontal diffusive fluxes for the m-equations are given by

Λ(m)
0 = Kh0r3 ∂ω0

∂r
, Λ(m)

1 = Kh1r3 ∂ω1

∂r
, Λ(m)

2 = Kεh2r3 ∂ω2

∂r
, (A4)

with ωj = vj/r denoting the angular velocity in layer j. According to the top line in (A3)
there are six processes that can cause local time changes in the boundary layer absolute
angular momentum: (i) radial divergence of the radial advective flux; (ii) upward flux
of m0 when w > 0; (iii) downward flux of m1 when w < 0; (iv) turbulent exchange
of angular momentum between the lower two layers, through the term −µ(m0 − m1);
(v) loss of m0 through surface drag; (vi) radial divergence of the radial diffusive flux.
Similar processes exist in the other layers. To convert the top line in (A3) into an advective
form, we differentiate the second term as a product of ru0h0 and m0 and then make use
of the continuity Equation (6) to obtain Equation (1.14) of Table 1. In a similar manner,
the other two angular momentum conservation relations in (A3) can be converted to
Equations (1.15) and (1.16) of Table 1, where the right-hand side terms are defined in (10).

The sum of the three equations in (A3) yields (neglecting horizontal diffusion) the
vertically integrated angular momentum principle

∂(h0m0 + h1m1 + εh2m2)

∂t
+

∂[r(u0h0m0 + u1h1m1 + u2εh2m2)]

r∂r
= −cDUrv0. (A5)

Integration of (A5) over the domain yields

d
dt

∫ b

0

(
h0m0 + h1m1 + εh2m2

)
r dr =− b

(
u0h0m0 + u1h1m1 + u2εh2m2

)
r=b

−
∫ b

0
cDUrv0 r dr,

(A6)

so the time change of the total absolute angular momentum in the domain is the result of
flux through the outer boundary and loss due to surface drag.
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